21415 4 Hours / 100 Marks

Seat No.	
----------	--

Instructions: (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-Programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
- (8) Use Limit state method for all design.
- (9) Write the answers in sequential order.

Marks

1. [A] Solve any THREE:

 $3 \times 4 = 12$

- (a) Define "Limit State" and state types of Limit States.
- (b) State four assumption made in Limit State of collapse for flexure.
- (c) State two Ductile detailing provision in IS 13920.
- (d) State two advantages and two disadvantages of prestressed concrete.
- (e) State various forms of shear reinforcement in beams.

[B] Solve any ONE:

 $1 \times 6 = 6$

- (a) A beam 300 mm × 500 mm effective size carries a factored BM of 175 kN·m. If concrete M20 & steel grade Fe 500 are used, find area of steel.
- (b) Find moment of resistance if steel provided is 4 bars of 16 mm diameter in a beam 300×600 mm effective & concrete M20 and steel Fe 500 are used.

2. Solve any TWO:

 $2 \times 8 = 16$

- (a) Design a one way slab with following data, span = 4.5 m, Live load = 4 kN/m², floor finish = 1 kN/m². Concrete M20 & Steel Fe 415, M.F. = 1.4. Sketch C/S of slab showing reinforcement details. (No checks)
- (b) Design a reinforced concrete slab panel for 6.3×4.5 m simply supported on all the four sides. It has to carries a live load of 4 kN/m^2 in addition to its dead load. Use M25 concrete Fe 415 steel. Sketch the C/S of slab along shorter span showing steel details. (No checks) Use $\alpha_x = 0.062$ & $\alpha_y = 0.060$.
- (c) Design a cantilever chajja with following data:

Span = 1.0 m, Width = 1.5 m, L.L. = 1.00 kN/m^2

Finish = 0.5 kN/m^2 , support lintel = $230 \times 230 \text{ mm}$

Concrete M20, Fe 415 steel. Sketch the C/S of chajja. Showing steel details. (No checks)

3. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) State the conditions of formation of Flanged beams & State effective flange width for T & L beam.
- (b) Find the moment of resistance (M_4) of tee (T) beam with following data: $D_f = 120$ mm, $b_f = 1100$ mm, $b_w = 275$ mm, d = 450 mm, $A_{sf} = 2400$ mm², Concrete M 25, Steel Fe 500.
- (c) Diameter of steel bar is 16 mm. Use Fe415 steel and design bond stress is 1.2 MPa. For plain bars in tension. Find development length in tension and compression.
- (d) Define development length & state factors affecting development length.
- (e) Design a column with following data:

 Factored load = 3000 kN, concrete M20, Steel Fe415, Unsupported length = 3.0 m. Assume 1% steel.

17604 [3]

4. [A] Attempt any THREE:

 $3 \times 4 = 12$

- (a) State methods of prestressing and explain in brief any one.
- (b) Calculate load carrying capacity of column 300 mm \times 450 mm in size reinforced with 4.16 mm ϕ & 412 mm ϕ dia. bars. Use M20 and Fe 415 steel.
- (c) Define term partial safety factor & identify the various factors & values recommended in IS 456 for steel & concrete.
- (d) Enumerate at least three situations in which a doubly reinforced beam is provided.

[B] Attempt any ONE:

6

- (a) Determine the ultimate moment (M_U) capacity of a beam b = 280 mm, d = 510 mm, d' = 50 mm, A_{sf} = 2455 mm², A_{sc} = 402 mm², f_{ck} = 30 N/mm², f_y = 415 N/mm². Use f_{sc} = 353 N/mm².
- (b) An R.C. beam 200×300 mm effective is constructed with concrete M20 and Steel Fe415. Find the steel required if factored moment on beam is 74 kN·m. Assume d' = 30 mm & σ_{sc} = 353 N/mm².

5. Attempt any TWO:

 $2 \times 8 = 16$

- (a) A doubly reinforced beam section 250×500 mm effective, carries a factored moment of 165 kN·m. Find the area of steel required if M20 concrete & Fe 500 are used. Assume d' = 50 mm & σ_{sc} = 353 N/mm².
- (b) A beam 300×1010 mm effective has a span of 7 m carrying a udl of 45 kN/m throughout the span & provided with Tensile steel is 6.22 mm ϕ bars. If concrete M20 & Fe415 steel are used. Design shear reinforcement. $\tau_{c_{max}} = 2.8 \text{ N/mm}^2$, $\tau_c = 0.56 \text{ N/mm}^2$ for 0.75% steel.
- (c) Design an RC column footing with following data size of column = $400 \text{ mm} \times 400 \text{ mm}$, safe bearing capacity on soil = 200 kN/m^2 , load on column = 1000 kN. Concrete is M20 and Steel 415. Depth of footing is from B.M. criteria. No shear check is required.

17604 [4]

6. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) Find (M_U) limiting moment of resistance of a T-beam with following data $b_f = 1500$ mm $b_w = 300$ mm, d = 700 mm, $D_f = 100$ mm, $A_{sf} = 2500$ mm². Concrete M20 & Fe 415 steel.
- (b) What do you understand by under reinforced and Balanced section?
- (c) What is the minimum and maximum percentage of tension steel that should be provided in flanged beams?
- (d) What is the minimum and maximum percentage of steel allowed in an R.C. column? Also state necessasity of lateral ties in column & its spacing.
- (e) Calculate the area of longitudinal steel for short circular column of diameter 400 mm with effective length 4.5 m to carry a factored load of 900 kN. Use M20 & Fe 500 steel.